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Abstract

We present the likelihood score andF statistics for ascertaining equivalence of two treatments in
survival under an exponential model with independent censoring. We provide explicit formulae for
power and sample size requirement for trials using the score andF tests, and compare the score and
F tests with the log rank test by Com-Nougue et al. (Statist. Med. 12 (1993) 1353). Simulation results
show that empirical powers of the score,F and log rank tests are satisfactorily close to the correspond-
ing asymptotic powers for small-to-moderate sample size.We find these threemethods are essentially
identical in terms of level and power. However, the score andFmethods are very sensitive to departure
from the exponential assumption while the log rank test is more robust. The methods are illustrated
by application to data from a randomized trial of two treatments for B non-Hodgkin lymphoma.
Published by Elsevier B.V.
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1. Introduction

Recently, there has been a great interest in establishing equivalence of two treatments
in clinical trials. For example, a standard chemotherapy in pediatric oncology is highly
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effective but causes severe toxic side-effects, and researchers are interested in a less toxic
new treatment which may be essentially as effective as the standard one in survival (Patte
et al., 1991). The intention of an equivalence trial is to demonstrate that two treatments
do not differ by more than a prescribed small amount which is materially insignificant.
The conventional test procedure for detecting a difference in a comparative trial cannot be
applied for this situation.
Statistical methods for establishing one-sided equivalence or non-inferiority of a new

treatment to the standard one on binary responses have been investigated by many authors,
e.g.,Dunnett andGent (1977),Roebruck andKühn (1995)andNam (1997). For equivalence
of two survival distributions with censored observations,Wellek (1993)andCom-Nougue
et al. (1993)have proposed testing procedures based on the proportional hazards model.
Wellek (1993)derived the uniformly most powerful test in terms of the maximum partial
likelihood estimator but the sample size equation is not given explicitly whileCom-Nougue
et al. (1993)provided the confidence intervals for the actual hazard ratio based on the log
rank test statistic. When data follow an exponential model with no censoring,Bristol and
Desu (1990)have suggested a parametric method of testing for equivalence. However, a
parametric method based on censored data has not been thoroughly studied.
In this paper, we investigate statistical methods involving the equivalence of two treat-

ments based on exponentially distributed survival data with censoring. In Section 2, we
derive two different tests for equivalence: the score test andF test procedures. In addition,
the asymptotic powers and approximate sample size formula are provided. In Section 3, the
score andF tests are compared with the log rank test (Com-Nougue et al., 1993) by simula-
tions in level and power, and approximate numbers of events required for a specific power
using these methods are examined. Also, we investigate the robustness of the three tests
when the underlying exponential model is violated. Sections 4 and 5 contain an example
based on non-Hodgkin’s malignant type B lymphoma data and discussion.

2. Test statistics and power functions

2.1. Score method

Denote the survival and censoring times of standard and new treatment groups bytij and
cij for i = 0,1 andj = 1,2, . . . , ni, respectively. The first subscripti = 0,1 indicates the
standard and new treatment groups and the second subscript indicates thejth individual
in the ith group. Under right censorship, we observe survival data{(xij , �ij ), i = 0,1 and
j = 1,2, . . . , ni}, wherexij = min(tij , cij ) and�ij = I (tij �cij ), i.e.,�ij = 1 if tij �cij

and�ij = 0 otherwise. Assume thattij andcij are independent within a group.
Consider the exponential survival distributions of the standard and the new treatment

groups asS0(t) = exp(−h0t) andS1(t) = exp(−h1t), wherehi >0 for i = 0,1. Denote
the hazard ratio byr = h1/h0. Let xi· = ∑ni

j=1xij anddi be total survival follow-up time
and the number of uncensored observations fori =0,1, respectively. The score statistic for
testing H0 : r �r0 against H1 : r < r0 can be simplified as

z = {d1 − �̂(r0)}/{̂v(r0)}1/2, (1)
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where�̂(r0) = (d0 + d1){r0x1·/(x0· + r0x1·)} and v̂(r0) = d0d1/(d0 + d1). We reject H0
against H1 at the significance level of� whenz� − z(1−�), wherez(1−�) is the 100(1− �)

percentile point of the standard normal distribution.
The asymptotic power of the score statistic (1) for testingr = r0 againstr = r1(< r0) is

Pr{z� − z(1−�)|H1 : r = r1} = 1− �(u), (2)

whereu = [v(r0)
1/2z(1−�) − {�(r1) − �(r0)}]/v(r1)

1/2. Denoting the design parameter by
� = n1�1/(n0�0) and given that the number of total events,d, is kept fixed, we have the
expectation ofd1 under the null and the alternative as�(r0) = d�/(� + 1) and�(r1) =
dr0�/(r0� + r1) and the variances ofd1 under H0 and H1 asv(r0) = d�/(� + 1)2 and
v(r1) = dr0r1�/(r0� + r1)

2, respectively. The approximate total number of uncensored
observations required for a power, 1− �, of the score test at� is obtained by solving the
following general equation with respect tod:

v(r0)
1/2z(1−�) + v(r1)

1/2z(1−�) = �(r1) − �(r0), (3)

e.g.,Nam (1987). For a balanced design with equal censoring patterns for the standard and
new treatment groups, formula (3) leads to

d = {(r0 + r1)z(1−�) + 2(r0r1)
1/2z(1−�)}2/(r0 − r1)

2. (4)

2.2. F method

For a general censoring pattern, the exact distribution ofui =2nihi/ĥi wherêhi =ni/xi·
is unknown. However, we may have a good approximation by consideringui = 2dihi/ĥ

′
i ,

wherêh′
i = di/xi· as a chi-square with 2di degrees of freedom, e.g.,Cox and Oakes (1984).

The ratio of two chi-squares standardized by their degrees of freedom, i.e.,F(r)= rx̄1·/x̄0·,
wherex̄i· = xi·/di for i = 0,1, is distributed approximatelyF with 2d1 and 2d0 degrees of
freedom. We reject H0 in a favor of H1 at level� if

F(r0)
−1 = (r0x̄1·/x̄0·)−1�F2d0,2d1(�), (5)

whereF2d0,2d1(�) is the 100� percentile point of theF distribution with 2d0 and 2d1 degrees
of freedom.
The asymptotic power of theF test forr = r0 againstr = r1(< r0) for given values ofd0

andd1 at level� is

Pr{F(r0)
−1�F2d0,2d1(�)|H1 : r = r1}=1− �. (6)

Apair of event sizes withd0 andd1 may be found by (6) for a given power but the solution
is not unique. Using a design parameter�, we may approximately writed1 = �d0, where
� is fixed and power (6) is a function ofd0. In a typical case of� = 1,d0 is obtained by the
relation of

Pr{F2d0,2d0 �(r0/r1)F2d0,2d0(�)} = 1− �. (7)
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3. Numerical evaluation

3.1. Size and power of tests

In order to compare the score andF tests with a non-parametric method, we introduce
the log rank test derived byCom-Nougue et al. (1993). Denotet1, t2, . . . , td as the distinct
times of events that occurred in the pooled treatment groups. For testing the equivalence of
two treatments using survival data with censored observations,Com-Nougue et al. (1993)
presented the modified log rank test statistic given by

u(r0) = {d1 − E1(r0)}/{var1(r0)}1/2, (8)

which is asymptotically standard normal. HereE1(r0) = ∑d
k=1n1kr0/(n1kr0 + n0k) and

var1(r0) = ∑d
k=1n0kn1kr0/(n1kr0 + n0k)

2, wherenik is the number of subjects at risk in
the ith group at timetk for i = 0,1 andk = 1,2, . . . , d. For testing H0 : r �r0 against
H1 : r < r0, we reject H0 whenu(r0) is small. From the result ofFleming (1990), an
approximate number of events required for power 1− � is derived as

d = 4{z(1−�) + z(1−�)}2/{ln(r0) − ln(r1)}2. (9)

Let�k = n1k/n0k for k = 1,2, . . . , d. When�k = 1 for all k, (9) reduces to

d = {r1/20 (r1 + 1)z(1−�) + r
1/2
1 (r0 + 1)z(1−�)}2/(r1 − r0)

2. (10)

We conducted a simulation study to evaluate the performance of the score,F and log
rank tests for equivalence of two treatments using survival data with independent censoring
under a balanced designwhen the sample size is small ormoderate.We generate the survival
times of the standard and new treatment groups from exponential distributions with mean
1 and 1/r, respectively, and also the censoring times from exponential distributions with
means corresponding to a common censoring fraction. By matching survival and censoring
times innpairs in sequence, we generate the observed times,xij =min(tij , cij ), for i =0,1
andj = 1,2, . . . , ni . Table 1summarizes results of the computation of empirical size and
power of the three tests based on 10,000 simulations for various values of the null and
alternative, censoring fraction of 0.1, 0.3 and sample sizen = 25 and 50. It shows that the
empirical size and power are generally very close to the 5% level and the asymptotic power
for each of the three tests. The power of a test is positively related to the difference between
null and alternative and the sample size, and inversely related to the censoring fraction. The
three tests are generally comparable in level and power.
From (4), (7) and (10), we calculate the approximate number of events required for power

= 60% and 80% of the score,F and log rank tests at 0.05 level for various values of null
and alternative in a balanced equivalence trial and present results inTable 2. In addition, we
simulate the actual power of a test for the required number of events given by the formula
and add inTable 2. The three methods provide a similar requirement for total number of
events except the cases ofr0 = 2.0 andr1 = 1.8 and 1.5. In particular, those by the score
andF methods produce virtually identical results. As the alternative approaches closer to
the null, the number of events required for a specific power of the log rank test is slightly
larger than required for the parametric methods. Fleming’s method (1990), (9), also has the
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Table 1
Empirical sizes and powers of score (S), F and log rank (lnR) tests based on 10,000 simulations for the sample
size ofn0 = n1 = 25,50 when the underlying distribution is exponential

n0 = n1 r0 r1 Censoring fraction

0.1 0.3

S F lnR S F lnR

25 2.0 2.0 0.054 0.050 0.051 0.054 0.052 0.052
(0.050) (0.050) (0.050) (0.050) (0.050) (0.050)

1.5 0.251 0.242 0.240 0.223 0.214 0.209
(0.244) (0.244) (0.251) (0.210) (0.209) (0.218)

1.0 0.761 0.749 0.737 0.655 0.640 0.635
(0.735) (0.745) (0.753) (0.636) (0.648) (0.663)

1.5 1.5 0.053 0.049 0.051 0.052 0.050 0.050
(0.050) (0.050) (0.050) (0.050) (0.050) (0.050)

1.0 0.392 0.381 0.385 0.330 0.317 0.321
(0.378) (0.382) (0.394) (0.319) (0.321) (0.334)

0.8 0.683 0.671 0.670 0.582 0.566 0.573
(0.661) (0.671) (0.684) (0.565) (0.576) (0.591)

50 2.0 2.0 0.054 0.052 0.052 0.047 0.046 0.044
(0.050) (0.050) (0.050) (0.050) (0.050) (0.050)

1.5 0.398 0.391 0.375 0.333 0.327 0.318
(0.385) (0.387) (0.385) (0.325) (0.326) (0.328)

1.0 0.947 0.945 0.937 0.898 0.892 0.888
(0.946) (0.948) (0.946) (0.888) (0.892) (0.892)

1.5 1.5 0.051 0.050 0.051 0.051 0.051 0.050
(0.050) (0.050) (0.050) (0.050) (0.050) (0.050)

1.0 0.611 0.604 0.599 0.531 0.523 0.523
(0.602) (0.606) (0.612) (0.512) (0.516) (0.525)

0.8 0.907 0.904 0.902 0.834 0.827 0.825
(0.904) (0.907) (0.911) (0.828) (0.834) (0.841)

The values in parentheses are large sample power approximation with a nominal 0.05 level.

similar result as those of the score andFmethods. The actual power of the score test for the
approximate number of events given by (4) is greater than or equal to a nominal power. The
number of events given by (7) and (10) provide the actual powers ofF and log rank tests
which are smaller than the nominal power except in a few cases. Fleming’s method always
yields an actual power that is less than the nominal one.

3.2. Robustness

The Weibull distribution with scale and shape parameters,	 and
, is flexible and has a
wide application in survival data. Its survival distribution, density function and cumulative
hazard rate areS(t) = exp{−(	t)
}, f (t) = 
	(	t)
−1 exp{−(	t)
}, andH(t) = (	t)
.
The hazard rate of Weibull is monotonically increasing, constant or decreasing according
to 
>1,
 = 1, and
<1. The exponential distribution is a special case of Weibull, i.e.,

 = 1. We generate the survival times of standard and new treatment groups fromWeibull
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Table 2
Total number of events in trials calculated by the score (S), F, log rank (lnR) and Fleming methods for power
= 60%, 80% and� = 0.05

r0 r1 Nominal S F lnR Flemming
power (%)

2.0 1.8 60 1300 1300 1419 1298
(0.605) (0.600) (0.599) (0.567)

80 2230 2229 2451 2228
(0.803) (0.795) (0.811) (0.757)

1.5 60 176 175 182 174
(0.600) (0.599) (0.592) (0.574)

80 301 300 317 299
(0.806) (0.806) (0.795) (0.783)

1.2 60 57 56 55 55
(0.610) (0.595) (0.574) (0.578)

80 97 96 97 95
(0.805) (0.794) (0.782) (0.778)

1.0 60 32 31 29 30
(0.621) (0.596) (0.558) (0.577)

80 54 52 52 51
(0.802) (0.789) (0.783) (0.774)

0.8 60 19 16 16 17
(0.629) (0.530) (0.550) (0.576)

80 31 30 29 29
(0.812) (0.786) (0.756) (0.757)

1.5 1.2 60 291 290 292 289
(0.602) (0.597) (0.593) (0.594)

80 499 497 504 497
(0.801) (0.801) (0.798) (0.795)

1.0 60 90 89 87 88
(0.607) (0.583) (0.583) (0.590)

80 152 151 150 150
(0.800) (0.790) (0.796) (0.795)

0.8 60 38 37 36 36
(0.617) (0.596) (0.572) (0.569)

80 65 64 62 63
(0.811) (0.786) (0.782) (0.795)

The numbers in parentheses are the actual power of tests for the total number of events when censoring fraction
=30%.

distributions with parameters,(1,
) and(	,
), respectively, along with the corresponding
censoring times. We examine actual levels of significance of the score,F and log rank
tests from (1), (5) and (8), respectively, when the underlying model is Weibull. Simulation
results are summarized inTable 3. It shows that the actual levels of the score andF tests are
anti-conservative when a hazard rate is accelerating(
>1) or they are conservative when
a hazard rate is decelerating(
<1). If a hazard rate is nearly constant, the actual level is
reasonably close to a nominal 0.05. The empirical level of the log rank test is satisfactorily
close to 0.05. The reason is that the Weibull distribution accommodates the assumption
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Table 3
Empirical sizes of score (S), F and log rank (lnR) tests based on 10,000 simulations for the sample size of
n0 = n1 = 25,50 when the underlying distribution is Weibull with scale and shape parameters,(	,
)

n0 = n1 (	,
) Censoring fraction

0.1 0.3

S F lnR S F lnR

25 (2.46, 1/1.3) 0.032 0.033 0.051 0.027 0.027 0.049
(2.30, 1/1.2) 0.035 0.036 0.048 0.035 0.035 0.048
(2.14, 1/1.1) 0.042 0.043 0.052 0.043 0.043 0.052
(2, 1) 0.050 0.050 0.052 0.052 0.052 0.054
(1.88, 1.1) 0.061 0.063 0.058 0.062 0.062 0.054
(1.78, 1.2) 0.069 0.071 0.052 0.067 0.068 0.049
(1.70, 1.3) 0.081 0.084 0.053 0.082 0.083 0.055

50 (2.46, 1/1.3) 0.018 0.019 0.049 0.018 0.018 0.052
(2.30, 1/1.2) 0.024 0.025 0.049 0.025 0.025 0.049
(2.14, 1/1.1) 0.033 0.034 0.046 0.034 0.034 0.049
(2, 1) 0.051 0.051 0.050 0.051 0.051 0.050
(1.88, 1.1) 0.066 0.068 0.047 0.069 0.070 0.049
(1.78, 1.2) 0.096 0.098 0.052 0.093 0.094 0.052
(1.70, 1.3) 0.126 0.128 0.050 0.118 0.119 0.048

of the log rank test, i.e., a constant rates of the two hazard rates with respect to survival
time.

4. An example

Consider an equivalence trial of two treatments for non-Hodgkin’s malignant type B
lymphoma (Com-Nougue et al., 1993). After an induction treatment of 4 months, the stan-
dard procedure provides a maintenance chemotherapy of 7 months while the new one
shortens the length of the maintenance treatment to 4 months in order to reduce toxic-
ity. Researchers would like to show that event-free survival rate is not compromised by
the shortening the maintenance chemotherapy. The 166 patients were randomly assigned
to treatments: 82 for the short arm and 84 for the long arm. The number of events that
occurred in the new and standard treatment groups wered1 = 9 andd0 = 11. A patient
having complete remission and no relapse within 18 months is considered cured, and there
is no loss to follow-up before 18 months in the updated lymphoma data.Kaplan–Meier
survival curves (1958)for the short and long arms are shown inFig. 1. We may consider
the short arm as effective as the long arm if the ratio of hazard rates (the former to the
latter) is less than, say, 2. One-sided score andF tests for H0 : r �2 against H1 : r <2 yield
z = −1.989(p = 0.023) andF22,18= 0.4006(p = 0.022) from (1) and (5), and the log rank
method givesu = −1.981(p = 0.024) from (8). Results of the three tests are essentially
identical and rejectr �2 in a favor ofr <2. For H0 : r �2.73 against H1 : r <2.73 consid-
ered byCom-Nougue et al. (1993), the score,F and log rank tests yield highly significant
p-values, i.e., 0.0051,0.0037 and 0.0028, respectively. Significance testing indicates that
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Fig. 1. Kaplan–Meier’s survival curves of short(4 months) and long(7 months) maintenance treatments.

the short arm is not inferior to the long arm. In a previous trial byPatte et al. (1991), the 18
months survival rate of patients treated by the standard procedure was estimated as 90%.
For a 90% event-free survival rate for the long arm, the relative risks ofr0 = 2 and 2.73
correspond to 9% and 15% lower survival rates for the short arm under an exponential
model.
The estimated relative risk under the exponential model isr̂ = 0.8 and the ratio of events

of the new treatment group to those of the standard one is� = d1/d0 = 0.818. The powers
of the score andF tests for testingr0 = 2 againstr1 = 0.8 at� = 0.05 are both 64.4% from
(2) and (6), and those forr0=2.73 againstr1=0.8 are 85.3% and 85.1%, respectively. The
corresponding values of the power of the log rank test are 66.5% and 87.4%. The study has
reasonably good power.
As shown inFig. 2, the cumulative hazard rates of both treatment groups were approxi-

mately linear whent �7.5 months. Since 90% of events occurred in this period, the expo-
nential model is not inconsistent with the data. After 7.5 months, no relapse was observed
for the short arm but two events occurred for the long arm. This suggest that longer exposure
to toxicity may be rather detrimental.

5. Discussion

We investigated statistical methods for establishing the equivalence of two treatments
based on exponentially distributed data with censoring. Asymptotic and empirical results
show that the score andF tests are essentially the same in terms of level of significance
and power. We found that the log rank test is also similar to the score andF tests for
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Fig. 2. Cumulative hazard rates of short(4 months) and long(7 months) maintenance treatments.

equivalence. We limited our simulations and numerical evaluation to equal censoring and
a balanced design. Note that a randomized trial usually results in an allocation of an equal
number of patients to the new and standard treatment groups.
The parametric tests are derived under the exponential model and the non-parametric

method is obtained by assuming a constant ratio of two hazard rates over time. It is advisable
to examine the adequacy of the model for the observed data by plotting the cumulative
hazard rate over time. It is well known that the exponential distribution has been popular in
the field of industrial reliability. Although the exponential model has found limited use in
biomedical applications, it has been commonly employed for short term survival analysis
where an aging process can be considered as a constant.
The two-parameterWeibull distribution ismore flexible than the one-parameter exponen-

tial model in fitting survival data. Under theWeibull model, the score andF procedures for
equivalence of two treatments based on the exponential model are biased except a special
case (i.e., a constant hazard rate) while the log rank test is unbiased for all cases. The three
tests can be applied for a short term survival analysis but we caution use of the parametric
methods for a long term survival analysis.
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